Natalia Kuznetsova, UC Santa Barbara On behalf of the BaBar Collaboration

- Theoretical predictions and experimental status
- Analysis methods
- Signal properties
- Main background categories
 - J/ ψ [ψ (2S)] K and J/ ψ [ψ (2S)] K* events
- Results

Theoretical issues

l ⁺ g Z b t s	l ⁺ g Z b W s t	5 b	$l^+/m/l^-$ W t W S
Mode	Predicted Br. Fr.* (~35% uncertainty)	Product Br. Fr.	# produced events / 10 fb ⁻¹
<i>B</i> ⁺ - > K ⁺ <i>I</i> ⁺ <i>I</i> ⁻	5.7 x 10 ⁻⁷	5.7 x 10 ⁻⁷	12.0
$B^{0} - > K^{*0} e^{+}e^{-} (K^{*0} - > K^{+}p^{-})$	2.3 x 10 ⁻⁶	1.5 x 10 ⁻⁶	16.1
$B^{0} - > K^{*0} \text{ min}(K^{*0} - > K^{+}p)$	1.9 x 10 ⁻⁶	1.3 x 10 ⁻ ⁶	13.3
TOTAL events produced			41.4

For now, we are only looking at 3.15 fb⁻¹ of data

- this is the first stage of a blind analysis
- we expect to have 20 fb⁻¹ by the end of the year

*A.Ali et al., Phys. Rev. D. 61, (2000), 074024 (form factors from Light Cone QCD Sum Rules).

Experimental status

> 90% CL limits from CLEO (3.33 x 10⁶ $B\overline{B}$ data set) and CDF (88 pb⁻¹):

Mode	CLEO*	CDF**
K⁺ mim	< 9.7 x 10 ⁻⁶	< 5.2 x 10 ⁻⁶
K ^o mim	< 31.0 x 10 ⁻⁶	
K*+mim	< 33.0 x 10 ⁻⁶	
K ^{*0} mtm	< 9.5 x 10 ⁻⁶	< 4.0 x 10 ⁻⁶
K⁺e⁺e⁻	< 11.0 x 10 ⁻⁶	
K⁰e⁺e⁻	< 17.0 x 10 ⁻⁶	
K*+e+e-	< 38.0 x 10 ⁻⁶	
K*0e+e-	< 14.0 x 10 ⁻⁶	

*CLEO CONF 98-22, ICHEP98 1012 (1998) (unpublished). **T. Affolder *et al.*, Phys. Rev. Lett. **83**, (1999), 3378.

Analysis Methods (1)

- Basic ideas:
 - Perform a blind analysis
 - Select charged particle modes only:
 - $B^+ \rightarrow K^+ e^+ e^-$, $B^+ \rightarrow K^+ \mu^+ \mu^-$, $B^0 \rightarrow K^{*0} e^+ e^-$, $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ (where $K^{*0} \rightarrow K^+ \pi^-$)
 - use ΔE vs. m_{ES} plane to select signal region

$$m_{ES} = \sqrt{(\sqrt{s}/2)^2 - (p_B^*)^2}$$
$$\Delta E = E_B^* - \sqrt{s}/2$$

- $E_B^*(p_B^*)$ is the *B* candidate energy (momentum) in the CM frame
- \sqrt{S} = center-of-mass energy

DPF 2000

Analysis Methods (2)

- Select electrons with $p_{e}^{LAB} > 0.5$ GeV/c and muons with $p_{\mu}^{LAB} > 1.0$ GeV/c
- Require high multiplicity events (with # of tracks > 4); veto γ conversions
- Veto J/ ψ , ψ (2S) resonance regions
- Suppress continuum background using Fisher discriminant
- Particle ID:
 - electron ID based on energy deposition in the CsI calorimeter
 - muon ID based on the penetration length in the Instrumented Flux Return
 - hadron ID based on combined drift chamber dE/dx and Cherenkov angle information

Mode	K⁺e⁺e-	K+μ+μ-	K*⁰e⁺e⁻	$K^{*0}\mu^+\mu^-$
Efficiency, %	13.1	8.6	7.7	4.5

Predicted distributions for $q^2 = M^2_{l+l}$

• Solid line + blue bands: SM range (\pm 35%); Ali et al. form factors

- Dotted line: SUGRA model ($R_7 = -1.2$, $R_9 = 1.03$, $R_{10} = 1$)
- Long-short dashed line: SUSY model ($R_7 = -0.83$, $R_9 = 0.92$, $R_{10} = 1.61$) August 12, 2000 DPF 2000

Generated distributions for $q^2 = M^2_{l+l}$

We have implemented event generators using the model of Ali et al.

 $B \to K^{*0}$ mim (pole at $q^2 = 0$): *B* - > *K* mm: 30 30 q² [(GeV/c²)³] 10 م² q² [(GeV/c²)² 20 10 0 Ο З 2 2 3 0 O E_{lep} (GeV) E_{lep} (GeV) €200 Entries/[0.4 () 0 00 generated reconstructed 0 0 15 20 25 20 10 10 15 0 5 O 5 $q^{2} [(GeV/c^{2})^{2}]$ a^2 $[(GeV/c^2)^2]$

August 12, 2000

Background categories

> $B - > J/y K(K^*), y(2S) K(K^*)$ is the most serious background

- this background can be controlled by a cut in ΔE vs. m₁₊₁₋ plane
- also possible to have J/ ψ (–> μ + μ -) K with K and μ swapped
 - re-assign particle masses and cut on the J/ψ mass

> $B^+ - > D^0 (- > K^+ p^-) p^+$ with p^- misidentified as m^- and K^+ as m^+

- re-assign particle masses and veto the D⁰

➤ Continuum (e +e - -> qq)

- suppressed by using a 4-variable Fisher discriminant

\succ Combinatorial from $B \overline{B}$ events

suppressed by using vertexing

$B \rightarrow J/\psi [\psi(2S)] K^{(*)}$ events (1)

Signal $B \rightarrow J/y$ K and $B \rightarrow y(2S)$ K Monte Carlo

The <u>most serious background</u> for this analysis, **J/y [y(2S)] K**^(*) events, is suppressed by using a correlated selection in the **DE vs. m**_{I+I-} plane

This is needed to account for bremsstrahlung and track mismeasurement

$B \rightarrow J/\psi [\psi(2S)] K^{(*)}$ events (2)

B -> J/y [y(2S)] $K^{(*)}$ control sample (8 fb⁻¹ of data)

J/y [y(2S)] K^(*) events are also used as a control sample to verify the analysis efficiency

Results (1)

► For the purpose of setting the limit, we assume that **all** events in the signal region could be due to signal processes

Background is not subtracted
August 12, 2000

DPF 2000

Results (2)

Mode	# obs. evts	# bkg. evts	Preliminary 90% C.L. limit
K+ e+e-	2	0.20	< 12.5 x 10 ⁻ ⁶
K+ μ+μ-	0	0.25	< 8.3 x 10 ⁻⁶
K*0 e+e-	1	0.50	< 24.1 x 10 ⁻⁶
K^{*0} μ ⁺ μ ⁻	0	0.33	< 24.5 x 10 ⁻⁶
Total	3	1.3	

The number of **background** events is extracted from sideband in data

> Expect **1** signal event based on Geant MC (Ali *et al.* predictions).

A candidate $B^+ \rightarrow K^+ e^+ e^-$ event

Summary

- We have searched for the rare decays $B^+ \rightarrow K^+ l^+ l^+$ and $B^0 \rightarrow K^{*0} l^+ l^+$ using a sample of 3.67 x 10⁶ $B \overline{B}$ events
 - We are using this sample to better understand our backgrounds
- We have found 3 candidate events total and set preliminary 90% C.L. limits
 - The limits for the B -> K I modes are comparable to those set by other experiments
 - The limits for the B –> K*0 l+ l modes are less sensitive with this data sample
- We are planning to analyze substantially more data in the near future
 - BaBar will have 20 fb⁻¹ by the end of the year and an extra 30 fb⁻¹ by next year

August 12, 2000

DPF 2000