Measurement of CP asymmetry in B Decay with the BaBar Detector

Wouter Verkerke (UC Santa Barbara) for the BaBar collaboration

- Introduction to CP Violation
- The B⁰_d system as CP laboratory
- Experimental requirements and setup
 - Sin2 β /Mixing analysis
 - Outlook & Summary

Measurement of CP asymmetry in B Decay with the BaBar Detector

(I) Introduction to CP Violation

Why is CP violation interesting

- It is of fundamental importance
 - Needed for matter-antimatter asymmetry in the universe
- History tells us that studying symmetry violation can be very fruitful

- Conventional wisdom: Standard Model CP-violation is unlikely to explain matter asymmetry in the universe
 - It means there is something beyond SM in CP violation somewhere, so a good place to work

History of CP violation

- **1964:** CP Violation Observed in Kaon decays
Wolfenstein postulated the existence of a new force,
called SuperWeak, that generated CP violation in $K^0 \overline{K^0}$ mixing
and practically nothing else observable(Nobel)
- **1973:** Kobayashi and Maskawa observed that *CP* could be violated in the weak interaction with quarks if there were AT LEAST 3 generations of quarks (only 2 known at the time)
- **1975:** t lepton discovery starts the 3rd lepton generation (Nobel)
- **1977:** The *b* quark was discovered \Rightarrow start of the 3rd quark generation (Nobel)
- **1981:** The Bd meson was discovered, lifetime found long ~ 1ps
- **1986:** Large Matter-Antimatter oscillation was observed in Bd decay
- **1993:** The *B*_s mesons was discovered, huge Oscillation frequency
- **1995:** The *t* quark discovered \Rightarrow Completes the third quark generation
- 2000: nt discovered at Fermilab, completes third lepton generation
- **2001**: Dedicate B-factory experiments BaBar&Belle publish first results on $sin 2\beta$

CP Violation in the Standard Model

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}^{\mathsf{CKM matrix}}$$

$$\approx \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}^{\mathsf{Wolfenstein}}_{parameterization} + \mathcal{O}(\lambda^4)$$

$$\approx \begin{pmatrix} \operatorname{Complex}_{phase} \end{pmatrix}^{\mathsf{CKM matrix}}_{\mathsf{Complex}} + \mathcal{O}(\lambda^4) = \operatorname{Sin}(\theta_{\mathsf{cabbibo}}) \approx 0.22$$

- V has only 4 independent number in SM
 - commonly expressed in the Wolfenstein parameterization
- Standard model with 3 generations accommodates CP violation through a phase in the CKM matrix

Expressing Unitarity constraints: Unitarity Triangles

- Unitarity constraint on the CKM matrix gives 9 constraining relations on the matrix element.
- Example: Constraint on the 1st and 3rd columns of V.

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

- Align $V_{cd}V_{cb}^{*}$ with the real axis
- Renormalize sides by $|V_{cd}V_{cd}^*|$

- All side of order λ^3
- Magnitude of CP violation
 ∞ triangle area
- Unitarity test: Does the triangle close?

Wouter Verkerke, UCSB, for the BaBar collaboration

Measurement of CP asymmetry in B Decay with the BaBar Detector

(II) The B⁰_d system as CP laboratory

Why Study CP violation in the B system

Quark content of the B system

$$B^{0} = \overline{b}d, \quad \overline{B^{0}} = b\overline{d}, \\B^{+} = \overline{b}u, \quad B^{-} = b\overline{u}$$

- SM predicts a variety of CP violating asymmetries in the B system
- Some of these can be cleanly interpreted in term of CKM matrix elements (= parameters of the SM Lagrangian)
- Asymmetries expected to be large
- B^o mesons can be produced and detected easily

CP Violating Observables

- In order to generate a CP violating observable, we must have the following conditions:
 - Interference between at least two different amplitudes
- In B decays, we can consider two different types of amplitudes:
 - Those responsible for decay —
 - Those responsible for mixing
- This gives rise to three possible manifestations of CP violation:
 - Indirect CP violation
 - (interference between two mixing amplitudes)
 - Direct CP violation
 - (interference between two decay amplitudes)
 - CP violation in the interference between mixed and unmixed decays

u,c,t

u,c,t

 B^0

 B^{0}

 B^0

Direct CP Violation

• We observe CP violation in decay if

 $\Gamma(B \to f) \neq \Gamma(\overline{B} \to \overline{f})$

- In SM, CP conjugates of each amplitude can only differ by a phase factor: CP $A_{B\rightarrow f} = exp(-if) A_{B\rightarrow f}$
- Conditions for CP violation in decay
 - There exist at least 2 amplitudes for this decay, e.g.

 $\Gamma(\mathsf{B} \to \mathsf{f}) = |\mathsf{A}_1 + \mathsf{A}_2|$

- Amplitudes must have 2 phases: CP $A_{B\rightarrow f} = e^{-i (d_f + f_f)} A_{B\rightarrow f}$
 - A strong phase (doesn't change sign under CP)
 - A weak phase (flips sign under CP)
- Strong and weak phases must be different, amplitudes must be similar
- CKM Interpretation of observed direct CP violation difficult
 - Theoretical calculations of strong phase complicated

Indirect CP violation: B⁰-B⁰ mixing

 B^o and B^o oscillate into each other with a frequency that is experimentally accessible!

- Condition for CP violation in mixing: $|\langle B^0|H|\overline{B^0}\rangle| \neq |\langle \overline{B^0}|H|B^0\rangle|$
- − Mixing dominated by diagram with top quark → magnitude of CP violation $\propto (m_{\rm b}/m_{\rm t})^2 << 1$
- CP violation in mixing negligible in B system

CP Violation in Interference between Mixing and Decay

• Observe 2 processes leading to the same CP eigenstate via intermediate flavour eigenstate

• Time evolution of $B^0 - \overline{B^0}$ mixing oscillations:

$$\begin{split} |B^{0}(t)\rangle &= e^{-iMt}e^{-\Gamma t} \left(\cos\frac{\Delta m \ t}{2} |B^{0}\rangle + i \sin\frac{\Delta m \ t}{2} \cdot \frac{q}{p} |\overline{B^{0}}\rangle \right) \\ |\overline{B^{0}}(t)\rangle &= e^{-iMt}e^{-\Gamma t} \left(i \sin\frac{\Delta m \ t}{2} \cdot \frac{p}{q} |B^{0}\rangle + \cos\frac{\Delta m \ t}{2} |\overline{B^{0}}\rangle \right) \\ |B_{\pm}\rangle &= p|B^{0}\rangle \pm q|\overline{B^{0}}\rangle \end{split}$$

CP Violation in interference between mixing and decay

• Probability to observe CP eigenstate f_{CP} at time t:

$$F_{-}(t) \equiv |\langle f_{cp} | H | B^{0}(t) \rangle|^{2} = e^{-\Gamma t} |A|^{2} \left[\frac{1}{2} \left(1 + |\lambda|^{2} \right) + \frac{1}{2} \left(1 - |\lambda|^{2} \right) \cos \Delta m t - \operatorname{Im} \lambda \cdot \sin \Delta m t \right]$$

$$F_{+}(t) \equiv |\langle f_{cp} | H | \overline{B^{0}}(t) \rangle|^{2} = e^{-\Gamma t} |\overline{A}|^{2} \left[\frac{1}{2} \left(1 + |\lambda|^{2} \right) - \frac{1}{2} \left(1 - |\lambda|^{2} \right) \cos \Delta m t + \operatorname{Im} \lambda \cdot \sin \Delta m t \right]$$

$$a \overline{A}$$

$$\lambda = \eta_{cp} \quad \frac{q}{p} \quad \frac{A}{A} \quad \text{Amplitude ratio } B^0 \rightarrow f_{cp} / \overline{B^0} \rightarrow f_{cp} \\ \text{CP eigenvalue} \quad |B_{\pm}\rangle = p |B^0\rangle \pm q |\overline{B^0}\rangle \quad \approx 1$$

• Observable CP asymmetry $A_{cp}(t) = (F_+(t) - F_-(t))/(F_+(t) + F_-(t))$

$$A_{cp}(t) = \frac{-(1 - |\lambda|^2) \cos \Delta m t + 2 \operatorname{Im} \lambda \sin \Delta m t}{1 + |\lambda|^2} \qquad \left[= \operatorname{Im} \lambda \cdot \sin \Delta m t \right]$$

-CP asymmetry is **time dependent**
-Need $|\lambda| \neq 1$ or $\operatorname{Im} \lambda \neq 0$ to observe CP violation, SM predicts $|?| = 1$

Golden Mode for CP Violation in mixing/decay interference

• Dominant amplitudes for $b \rightarrow c\bar{cs}$ decay:

- Both amplitudes have the same weak phase: $A \propto V_{cb}^* V_{cs}$ no other amplitudes for this decay with competing magnitude
 - No CP violation in decay expected in SM
- CP violation in mixing also negligible because Γ_{12} <<1
- Standard Model CP violation (if there is any) is entirely due to interference between mixed and direct decay amplitudes

CKM interpretation of Golden Mode

• For the mode $B^0 \rightarrow J/? K^0$, K^0 mixing is required

Measurement of CP asymmetry in B Decay with the BaBar Detector

(II) Experimental requirements and setup

B^o meson production

Properties of coherent B^oB^o production

- B⁰B⁰ system evolves coherently until one of them decays
 - CP/Mixing oscillation clock only starts ticking at the time of the first decay, relevant time parameter δt:

 $dt = t_{CP} - t_{OtherB}$

- Bs have opposite flavour at time dt=0
- Half of the time CP B decays first ($\delta t < 0$)
- Integrated CP asymmetry is 0:

 $\int_{-\infty}^{+\infty} F(t) dt = \int_{-\infty}^{+\infty} \overline{F}(t) dt$

 Coherent production requires time dependent analysis

Experimental requirements for Time-dependent CP asymmetry measurement

- Large sample of B⁰B⁰ events with one fully reconstructed B⁰ in CP eigenstate
 - Branching fractions are low, $O(10^{-4})$
 - Need high luminosity collider
- Determine the *initial* flavour of the fully reconstructed B.
 - Determine from decay products of the other B
 - Need good particle ID
- Measure the proper time at decay
 - Momentum of B^0 in Y(4s) rest frame small (~300 MeV), spatial separation of B^0 mesons negligible
 - Use asymmetric collider to produce a boosted Y(4s) to produce a spatial separation of ~250 µm
 - Build high resolution silicon tracker close to interaction point.

The PEP-II storage ring

PEP-II accelerator schematic and tunnel view Wouter Verkerke, UCSB, for the BaBar collaboration

Parameter	Design	Achieved	
LER energy	3.1 GeV	3.1 GeV	ן ר
HER energy	9.0 GeV	9.0 GeV	Boost: $\beta \gamma = 0.56$
No. of bunches	1658	829	4ns between
LER current	2140 mA	2140 mA	
HER current	750 mA	920 mA	
LER lifetime	240 min.	200 min.	
HER lifetime	240 min.	660 min.	
Beam size x	222 μm	190 µm	
Beam size y	6.7 μm	6.0 µm	
Luminosity	3 x 10 ³³	3.1 x 10 ³³ –	→30 × 10 ⁶ B ⁰ /year

PEP-II Luminosity

- Recorded since May 1999: 20.7 fb⁻¹ on Y(4s) resonance
 - Additional 2.6 fb⁻¹ below Y(4s)

The BaBar experiment

The BaBar detector

5 layers of double sided silicon strips

Silicon vertex detector: precise δz measurement

- SVT Located in high radiation area
 - Radiation hard readout electronics (2Mrad)
- Up to 98% hit reconstruction
 efficiency
- Hit resolution ~15 µm at 0^o-

Silicon Vertex Detector

Drift Chamber

- 40 layers of wires inside 1.5 Tesla magnetic field
- Measurement of charged particle momentum
- Limited particle identification from ionization loss

Cerenkov Particle Identification system

EMC: Electromagnetic calorimeter: $\gamma/\pi^0/e^{\pm}$ ID

- 6580 CsI(TI) crystals with photodiode readout
- About 18 X₀, inside solenoid
- Excellent energy resolution, essential for $\pi^0 \rightarrow \gamma \gamma$

Instrumented Flux return: μ^{\pm} , K_L identification

- Up to 21 layers of RPCs sandwiched between iron plates
- Muons identified above 500 MeV
- Neutral Hadrons (K_L) detected

Particle ID performance

Kaons

- Efficiency: **70-90%**
- Pion misID: **1-7%**
- Momentum dependent

Electrons

- Efficiency: 90%
 - Pion misID:<**0.2%**

Muons

- Efficiency: 60-75%
- Pion misID: **<3%**

Online & offline event processing

- Collision rate at interaction point: several MHz
- BaBar has a two level trigger system to select events of interest
 - Hardware implemented Level-1 trigger, output rate of ~2 kHz
 - Software implemented Level-3 trigger, output rate of ~100 Hz
 - Raw event size ~30 kB/event \rightarrow write ~10Gb of data per hour
- Offline reconstruction of data follows with ~24 hours of data taking
 - Offline reconstruction performed in parallel by up to 250 SUN Workstations
 - In total about 1000 SUN workstations available for reconstruction, simulation and analysis
 - All data stored in Object Oriented database
 - Raw data and reconstruction level information on tape
 - Physics summary information on disk
 - Current database size ~ 300 Tb

Data taking efficiency

Efficiency by day

Daily integrated luminosity

Measurement of CP asymmetry in B Decay with the BaBar Detector

(III) Sin2 β and Mixing Analysis

 $sin 2\beta$ and mixing analysis overview

la: Exclusive reconstruction of
CP eigenstates (e.g.
$$B^0 \rightarrow J/\psi K_S$$
)
sin2 $\beta A_{CP}(t) = \frac{\Gamma(B^0 \rightarrow f_{CP}, t) - \Gamma(\overline{B}^0 \rightarrow f_{CP}, t)}{\Gamma(B^0 \rightarrow f_{CP}, t) + \Gamma(B^0 \rightarrow f_{CP}, t)} = A_{CP} \sin(\Delta m \cdot t)$
mixing $A_{Mix}(t) = \frac{\Gamma(B^0 \rightarrow f_{flav}, t) - \Gamma(\overline{B}^0 \rightarrow f_{flav}, t)}{\Gamma(B^0 \rightarrow f_{flav}, t) + \Gamma(\overline{B}^0 \rightarrow f_{flav}, t)} = A_{Mix} \cos(\Delta m \cdot t)$
b: Exclusive reconstruction
of flavour eigenstates
II: Tag initial flavour of $B^0_{CP/Mix}$
using tag of other B
 $A_{CP}(t) = \frac{\Gamma(B^0 \rightarrow f_{flav}, t) - \Gamma(\overline{B}^0 \rightarrow f_{flav}, t)}{\Gamma(B^0 \rightarrow f_{flav}, t) + \Gamma(\overline{B}^0 \rightarrow f_{flav}, t)} = A_{Mix} \cos(\Delta m \cdot t)$
III: Precise measurement
of time from $\Delta z \sim \beta\gamma c\Delta t$

Effect of experimental precision on CP measurement

Ia: Golden Modes: J/ ψ K_s ($\rightarrow \pi^+\pi^-, \pi^0\pi^0$), ψ (2s) K_s($\rightarrow \pi^+\pi^-$)

Ib: The J/ ψ K_L CP Mode

- J/ ψ K_L has opposite CP of J/ ψ K_s, same branching ratio
- K_L identification challenging
 - No positive detector signature, KL ID assigned by eliminating other hypotheses
- Only direction measured, not energy
 - Calculate K_L energy from kinematics, using $mB_{es} = mB_{PDG}$
 - Can no longer use cut on m_B to reject bkg.
- Substantial background
 - Most background (~70%) has real K_L, from modes like $J/\psi K^{\pm 0} (\rightarrow K_L \pi^{\pm 0})$
 - Background is not CP-neutral.
 Determine effective CP eigenvalue from MC

Ib: The B^o flavour eigenstate sample

II: Tag initial flavour of B⁰_{CP/Mix}

- Determine from flavour of other B in the event
 - 4 Mutually exclusive hierarchical categories

II: Tag initial flavour of $B^{0}_{\ CP/Mix}$, using tag of the other B

Effect of imperfect flavour tagging

• Affects value and precision of $sin 2\beta$ measurement:

III: Precise measurement of time δt

ο 400 σ Δz (μm)

Event display of golden event

Breakdown of CP events

Tag	CP =1 modes		$J\!/\psiK^{m 0}_{\scriptscriptstyle L}$		Total				
	B^0	$\overline{B}{}^{0}$	Tot	B^0	$\overline{B}{}^{0}$	Tot	B^0	$\overline{B}{}^{0}$	Tot
e+K	3	0	3	1	6	7	4	6	10
$\mu + K$	3	1	4	3	5	8	6	6	12
e	7	8	15	11	8	19	18	16	34
μ	5	7	12	5	6	11	10	13	23
Lepton	18	16	34	20	25	45	38	41	79
Kaon	80	76	156	70	60	130	150	136	286
NT1	13	15	28	16	6	22	29	21	50
NT2	30	25	55	32	27	59	62	52	114
Total tag	141	132	273	138	118	256	279	250	529
No tag		109			130			239	
Tag ε (%)		71 ± 2			66 ± 2			69 ± 2	

Fit strategy

 Global unbinn – Mixing : B0 	High statistics flavour sample will constrain most dilution and resolution				
– sin2 b : CP	parameters				
 Parameters modeling mistag, 					
At resolution and background are floated to obtain an empirical description of these properties from data			Floating all parameters simultaneously gives correct propagation of errors and correlations		
Parameter	#params	Driving subsample			
sin2β	1	СР	Only in CP fit		
Δm_d	1	Flavour	Only in Mixing fit		
D & ΔD	4x2 = 8	Flavour	ר ר		
Signal ∆t resolution	4 + 5 = 9	Flavour & CP	Largest correlation		
Bkg. Composition	Bkg. Composition 4+2=6 mB sideba		with sin28: 7.6%		
Bkg. D	D $4x2 = 8$ mB sideband				
Bkg. Δt resolution	3	mB sideband	J		

35 floating parameters in total

Blind Analysis strategy

- The sin2β and mixing results are blinded while the analysis is in progress
 - sin2β is hidden by adding an arbitrary offset and an arbitrary sign flip
 - ∆t is hidden by multiplying ∆t by the sign of the flavour tag and adding an arbitrary offset
 - The blinded approach allows systematic studies of tagging, vertex resolution and their correlations to be done while keeping the value of sin2β hidden
 - The result was unblinded two weeks before publication

Fit results: the δt resolution model

Parameterization: Sum of 3 Gaussians:

$$\begin{aligned} R(\delta t, \delta t') &= f_c \cdot G_c \left(\delta t' - \delta t, \ \sigma_c, \ \mu_{c,i} \right) & \longleftarrow & \text{Core} \\ &+ f_t \cdot G_t \left(\delta t' - \delta t, \ \sigma_t, \ \mu_t \right) & \longleftarrow & \text{Tail} \\ &+ f_o \cdot G_o \left(\delta t' - \delta t, \ \sigma_o = 8 \text{ ps}, \ \mu_0 = 0 \right) & \longleftarrow & \text{Outlier} \end{aligned}$$

Wouter Verkerke, UCSB, for the BaBar collaboration

 δt residual distribution from fit:

Fit results: mistag rates

- Mistag rate information mainly carried by B⁰ flavour sample, but is also valid for B⁰ CP sample
 - Lepton tag has the lowest mistag rate / highest dilution
 - Kaon tag has the highest tagging power

Flavor tag	Efficiency	Dilution	$Q = \epsilon D^2$
Lepton	10.9 ± 0.4 %	77 ± 4 %	6.4 ± 0.7 %
Kaon	36.5 ± 0.7 %	66 ± 3 %	15.8 ± 1.3 %
NT1	7.7 ± 0.4 %	58 ± 6 %	2.6 ± 0.5 %
NT2	13.7 ± 0.5 %	37 ± 5 %	1.8 ± 0.5 %
Total	68.9 ± 1.0 %		26.7 ± 1.6 %

Error on sin2 $\beta \propto 1/\sqrt{(Q)}$

Fit results: Δm_d from mixing fit

 $?m_d(PDG) = 0.472 \pm 0.017 \text{ ps}^{-1}$

Comparison of Δm_d results

Guide to $sin 2\beta$ fit results

Fit results: δt distributions of sin2 β fit by flavour tag

 $sin 2\beta$ fit: Raw $A_{CP}(t)$ and likelihood scan

Fit sanity checks: Breakdown by reconstruction/tagging mode

Control samples: expect $sin 2\beta = 0$

Fit results: systematic errors

- Dominant systematic: residual Drift Chamber & Silicon tracker misalignment (δt determination)
- Many systematic error contributions will reduce with increasing statistics
- Measurement is (and will be for a long time) statistics limited

Source	K _S	KL	Combined
δt determination	0.04	0.04	0.04
K _s modes BG	0.02		0.02
K _L BG J/Ψ br. fr.		0.05	<0.01
$K_L BG CP$ (non- Ψ , jumble, K*)		0.06	0.01
K_L Signal fraction		0.10	0.01
B lifetime	0.01	<0.01	<0.01
Δm	0.01	0.01	0.01
Other	0.01	0.04	0.01
Total	0.05	0.14	0.05

Comparison with existing $sin 2\beta$ measurements

BaBar sin2β and the Unitarity Triangle

- ε_K: CP violation in K⁰-K⁰ system
 Box diagrams with t and c quarks
- Δm_d : B⁰ mixing
 - $\Delta m_d \propto |V_{td}V_{tb}^*|^2$

- |V_{ub}/V_{cd}|: V_{ub} charmless semileptonic B decay
 - Lepton p* endpoint spectrum
- $\Delta m_s / \Delta m_d$: B_s and B_d mixing
 - Lattice QCD systematics cancel in ratio

Measurement of CP asymmetry in B Decay with the BaBar Detector

(IV) Outlook & Summary

What's next...

Charmless 2-body decays: road to sin2α

- Decay $B^0 \rightarrow \pi^+\pi^$ sensitive to sin2 α
 - Theoretically less clean, penguins have different weak phase

- $B \rightarrow h^+ h'^-$ analysis with likelihood fit for amount of $\pi \pi, \pi K, KK$
 - ✓ Large B→ $K^+\pi^-$ br. fraction indicates non-negligible penguin contribution

Mode	Yield	BR x 10 ⁶
$\pi^+\pi^-$	41 ± 10	$4.1 \pm 1.0 \pm 0.7$
K ⁺ π ⁻	169 ± 17	$16.7 \pm 1.6 \pm {}^{1.2}$ 1.7
K ⁺ K ⁻	8.2 ± ^{7.8} _{6.1}	<2.5

Additional CP modes for $sin 2\beta$

Wouter Verkerke, UCSB, for the BaBar collaboration

Luminosity

- More data on the way
 - Expect >25fb-1 more by end of August

Summary

- PEP-II and BaBar are operating at or above design after only one year.
- Most precise sin2β measurement to date:
 sin2b = 0.34 ± 0.20 (stat) ± 0.05 (syst)
- Competitive mixing results:
 Dm_d = 0.519 ± 0.020 ± 0.016 ps⁻¹ (hadronic)
- Mode CP modes in preparations for sin2β, many other analyses in progress.
- The 2001 run is well underway
 - expect ~500fb⁻¹ by 2005