

u c s b High Energy Physics _

Measurement of sin2β using B⁰ Decays into a Charmonium State and a K⁰ at BaBar

Stephen Levy, UCSB APS / DPF April 5, 2003

Origin of CP violation

Irreducible phase of CKM matrix only SM source of CP violation

$$\begin{array}{cccc}
\overline{B}^{0} & B_{L,H}^{0} \rangle = p |B^{0}\rangle \pm q |\overline{B}^{0}\rangle & & & & \\
B_{L,H}^{0} \rangle = p |B^{0}\rangle \pm q |\overline{B}^{0}\rangle & & & \\
\overline{g}^{0} & & & & \\
\hline \overline{g}^{0} & & &$$

$$f(B_{phys}^{0} \to f_{CP}, t) = \frac{\Gamma}{4} e^{-\Gamma |\Delta t|} \left[1 + C_{f} \cos(\Delta m_{d} t) - S_{f} \sin(\Delta m_{d} t)\right]$$
$$f(\overline{B}_{phys}^{0} \to f_{CP}, t) = \frac{\Gamma}{4} e^{-\Gamma |\Delta t|} \left[1 - C_{f} \cos(\Delta m_{d} t) + S_{f} \sin(\Delta m_{d} t)\right]$$

$$C_{\rm f} = \frac{1 - |?_{\rm f_{\rm CP}}|^2}{1 + |?_{\rm f_{\rm CP}}|^2}$$
Probe of direct CP violation: $|?_{\rm f_{\rm CP}}| \neq 1$

$$S_{\rm f} = \frac{2 \,{\rm Im}\,?_{\rm f_{\rm CP}}}{1 + |\,?_{\rm f_{\rm CP}}\,|^2}$$

Sensitive to phase of λ even without direct CP Violation

DPF: April 05, 2003

CP asymmetry in $B^0 \rightarrow (c\overline{c})K^0$

- Theoretically clean
 - Tree level dominates
 - Phase only from mixing
- Relatively large
 branching fractions
- Clear experimental signatures

S

PEP-II Asymmetric B-Factory

Outstanding PEP-II performance

BABAR Detector

EMC: $\sigma_{\rm E}/{\rm E} = 2.3 \% {\rm E}^{-1/4} {\rm \AA} 1.9 \%$

DPF: April 05, 2003

Stephen Levy, UCSB

Event topology

 $< |\Delta z| > ~ \beta \gamma c \tau = 260 \ \mu m$

Average Δz resolution 180 μ m

B_{REC} Vertex Determine B_{tag} vertex from **B**_{RFC} daughters Charged tracks not **Interaction Point** belonging to B_{rec} Beam spot – B_{rec} vertex and TAG Vertex momentum **B_{TAG} direction** 7 Beam spot and TAG tracks, V^os Y(4S) momentum $\boldsymbol{s}_{\Delta t} < 2.5 \, ps$

Vertex and Δz Reconstruction

- Determine B_{rec} vertex from B_{rec} charged daughters

B_{REC} direction

Flavor tagging

For electrons, muons and Kaons use the charge correlation

Multilevel neural network assigns each event to one of five mutually exclusive tagging categories

Each category is characterized by the probability of giving the wrong tag answer (mistag fraction w)

∆t Spectrum of CP Events

Use B_{flav} sample to measure w and R

• Fully reconstruct self-tagged modes: $m_{ES} = \sqrt{(E_{beam}^{cm})^2 - (p_B^{cm})^2}$

• Apply B_{tag} to other side:

$$f_{\text{Unmixed}}(\Delta t) = \left\{ \frac{e^{-\left|\Delta t\right|/t}}{4t_B} \left[1 \pm (1 - 2w)\cos(\Delta m_d \Delta t)\right] \right\} \otimes R$$

B_{flav} sample is x10 size of CP sample

Fit results: flavor tag Dilutions

Mixing fit with B^0 flav sample (30 fb⁻¹) $\Delta m_d = 0.516 \pm 0.016 \pm 0.010 \text{ ps}^{-1}.$

- Lepton tag has lowest mistag rate
- Kaon1 tag contributes most.

Flavor tag	Efficiency (ε)	Mistag fr. (ω)	$D = 1-2\omega$	εD ²
Lepton	9.1 ± 0.2 %	3.3 ± 0.6 %	93.4 ± 1.2 %	7.9 ± 0.3 %
Kaon1	16.7 ± 0.2 %	9.9 ± 0.7 %	80.2 ± 1.4 %	10.7 ± 0.4 %
Kaon2	19.8 ± 0.3 %	20.9 ± 0.8 %	58.2 ± 1.6 %	6.7 ± 0.4 %
Inclusive	20.0 ± 0.3 %	31.6 ± 0.9 %	36.8 ± 1.8 %	2.7 ± 0.3 %
Total	65.6 ± 0.5 %			28.1 ± 0.7%

Error on sin2 β Proportional to 1/sqrt(ϵD^2).

 $\sum_{i=1}^{\infty} \sin 2\beta$ golden sample: $(c\bar{c})K_{S}$ $(h_{f} = -1)$

Sample	N _{tagged}	Purity
$J/\psi K_{s}(\pi^{+}\pi^{-})$	974	97%
$J/\psi K_s(\pi^0\pi^0)$	170	89%
$\psi(2S) \ K_s$	150	97%
$\chi_{c1} K_s$	80	95%
$\eta_c K_s$	132	73%
Total	1506	92%

Latest addition:

where $\eta_c \rightarrow K^+ K^- \pi^0$ or

 $K^+K_s \pi^-$

 $B^0 \rightarrow \eta_c K_s$

sin2 β samples: J/ ψ K_L and J/ ψ K^{*0}

- Use m_B constraint to determine p_{KL}
- J/ψ background shape estimated from Monte Carlo
- Fake J/ψ background shape estimated from data sidebands

- Vector-Vector mode: mixture of CP-even and CP-odd
- Use angular analysis to determine CP-odd fraction
- Treat CP-odd component as dilution \rightarrow effective h_f

Fitting Strategy

Fit CP and B⁰ flavor samples simultaneously.

- Unbinned maximum likelihood fit.
 - Use measured evt-by-evt error on Δt .
 - Use m_{es} evt-by-evt to determine signal probability.
- Simultaneous fit automatically propagates uncertainty on dilutions and Δt resolution.

Total: 34 free parameters.

sin2ß Fit Results

All modes: $sin2b = 0.741 \pm 0.067 \pm 0.034$

Stephen Levy, UCSB

$sin2\beta$ by Decay Mode

Δt Distributions for lepton tagged (cc)K_s sample

98% Pure

Mistag frac. 3.3%

 $\sigma_{\Delta t}$ 20% better than other tag categories

It doesn't get much better than this!

sin2ß Control Samples

	<u>σ(sin2β)</u>
Description of background events	0.017
CP content of background components	
Background shape uncertainties	
Composition and content of J/ ψ K _L background	0.015
Δt resolution and detector effects	0.017
Silicon detector alignment uncertainty	
Δt resolution model	
Mistag differences between B_{CP} and B_{flav} samples	0.012
Fit bias correction	0.010
Fixed lifetime and oscillation frequency	0.005
TOTAL	0.034

Steadily reducing systematic error:	July $2002 = 0.034$	
	July $2001 = 0.05$	

$sin 2\beta$ world average

Check for direct CP violation

In the nominal sin2 β fit, we assume $|\lambda| = 1$ (as expected in SM)

where
$$\lambda \ = \ e^{-2i\beta} \ \frac{A}{A}$$

We check this SM assumption by performing the fit with $|\lambda|$ free.

The fit was done only on the very clean $(c\overline{c})K_s$ sample which requires minimal background assumptions.

$$\begin{split} |\lambda| &= 0.948 \pm 0.051 \text{ (stat)} \pm 0.030 \text{ (syst)} \\ &\text{Im } \lambda \, / |\lambda| = 0.759 \pm 0.074 \text{ (stat)} \end{split}$$

Consistent with the Standard Model expectation of $|\lambda| = 1$.

The Im $\lambda / |\lambda|$ term, which is sin2 β for the $|\lambda| = 1$ case, is consistent with the nominal fit (sin2 β = 0.755 ± 0.074 for (cc)K_s modes alone).

DPF: April 05, 2003

Method as in Höcker et al, Eur.Phys.J.C21:225-259,2001

Conclusions

 Latest measurement of sin2β with BaBar PRL 89, 201802 (2002)

$sin 2\beta = 0.741 \pm 0.067 \text{ (stat)} \pm 0.034 \text{ (syst)}$

- Next round will be precision measurement
- sin2β remains interesting with possible
 SM deviations in penguin only decays
- "The KM mechanism of CP violation has successfully passed its first precision test." Y. Nir

Backup Slides

Yields for CP (Ks) and B⁰ flavor data sets

Mode	Ntag	Purity (%)
J/ψK _s (π ⁺ π ⁻)	974	96.5
$J/\psi K_{s} (\pi^{0}\pi^{0})$	170	88.5
Ψ(2 <i>S</i>)K _s	150	96.9
$\chi_c K_s$	80	94.5
$\eta_c K_s$	132	63.4
(cc)K _s	1506	92.2
Breco Hadronic	23618	84.2
J/ψK [*] 0(K ⁺ π ⁻)	1757	95.8
Bflavor	25375	84.5

Goodness of fit from toy MC

- Use toy MC to evaluate the expected statistical error and the goodness of fit from the log likelihood.
- Samples are generated with exactly the same statistics and per-event properties (σ_{Δt}, tag cat, tag val, m_{es}) as the data sample.
- The per-event ∆t is regenerated based on the ∆t PDF from the likelihood fit of the data, using the per-event properties above.

Δt resolution function

- Sum of 3 Gaussians (core, tail, outlier)
- Core and tail width scales with event error:

•
$$\mathbf{s}_{c} = S_{c} \mathbf{s}_{Dt}$$

• $\mathbf{s}_{t} = S_{t} \mathbf{s}_{Dt}$ (S_t fixed to 3)

- Mean is free parameter. **Core** mean is flavor-tag dependent.
- Core and tail mean scale with s_{Dt}.
- Outlier has : $\mathbf{s}_{o} = 8 \text{ ps}$, mean = 0.
- BG resolution function is only core and outlier.

CP Asymmetry by Tagging Category for (cc) K_s

sin2β measurement history

- a) "Osaka 2000" measurement. (hep-ex/0008048).
 - Only J/ ψ K_s and ψ (2s) K_s.
- b) 1st Paper (PRL 86 (2001) 2515).
 - Added $J/\psi K_L$.
 - Simultaneous sin2β and mixing fit.
- c) 2nd Paper (PRL 87 (2001) 201803).
 - Added J/ ψ K^{\star 0} and χ_c K_s.
 - Better vertexing.
 - Better SVT alignment and higher K_s efficiency for new data.
- d) Winter 2002 (hep-ex/0203007).
 - Improved event selection.
 - Reprocessed 1st 20 fb⁻¹.
- e) Current measurement.
 - Improved flavor tagging.
 - One more CP mode: $\eta_c K_s$.

sin2β measurement history

- a) "Osaka 2000" measurement. (hep-ex/0008048).
 - Only J/ ψ K_s and $\psi(2s)$ K_s.
- b) 1st Paper (PRL 86 (2001) 2515).
 - Added $J/\psi K_L$.
 - Simultaneous sin2β and mixing fit.
- c) 2nd Paper (PRL **87** (2001) 201803).
 - Added J/ ψ K^{\star 0} and χ_c K_s.
 - Better vertexing.
 - Better SVT alignment and higher K_s efficiency for new data.
- d) Winter 2002 (hep-ex/0203007).
 - Improved event selection.
 - Reprocessed 1st 20 fb⁻¹.
- e) Current measurement.
 - Improved flavor tagging.
 - One more CP mode: $\eta_c K_s.$

Full expression for Δt from Δz

- The approximation $\Delta t \approx \Delta z/\beta \gamma c$ is very good but it ignores the B momentum (340 MeV/c) in the Y(4*S*) frame.
- Can use the fully reconstructed B to improve it

$$\Delta z = \beta \gamma \gamma_{\rm rec}^* c \Delta t + \gamma \beta_{\rm rec}^* \gamma_{\rm rec}^* \cos \theta_{\rm rec}^* c \left(\tau_B + |\Delta t| \right)$$

Where the B in the Y(4S) frame has $\ \ eta^*_{
m rec}=0.064$ and $\ \ \gamma^*_{
m rec}=1.002$

- Improves Δt resolution by about 5%.
- Removes a correlation between Δt and $\sigma_{\Delta t}$.

Δt bias correlation with $\sigma(\Delta t)$

Crosscheck: independent signal Δt resolution for CP and Breco

- The fit explicitly assumes that the charmonium and Breco modes share a common signal resolution function.
- MC supports this and the systematic is small: (0.002 this time).

Parameter	Breco	Charmonium
Scale core	1.10 ± 0.05	1.13 ± 0.15
Scale tail	3.0 (fixed)	3.0 (fixed)
Bias core, Lep	0.05 ± 0.07	0.03 ± 0.16
Bias core, Kaon1	-0.24 ± 0.05	-0.11 ± 0.13
Bias core, Kaon2	-0.25 ± 0.05	-0.16 ± 0.11
Bias core, Other	-0.21 ± 0.05	-0.25 ± 0.11
Bias tail	-1.1 ± 0.3	-1.1 ± 0.7
Fraction tail	0.11 ± 0.02	0.12 ± 0.07
Fraction outlier	0.003 ± 0.001	0.003 ± 0.003

Good agreement! $\Delta sin 2\beta = +0.011$

 $\sigma(sin2\beta)$ up 2%

Penguin terms in (cc̄)K_s

Tree amplitude proportional to

$$V_{cb}^{*} V_{cs} \approx A \lambda^{3}$$

Three penguins

- c quark: same CKM factors as tree so same weak phase.
- u quark: suppressed by $\lambda^2 \approx 0.04$.
- t quark: same order as tree but can regroup this one with u and c terms assuming unitarity.

$$V_{tb}^{*} V_{ts} = - V_{cb}^{*} V_{cs} - V_{ub}^{*} V_{us}$$

CP violation in $B^0 - \overline{B^0}$ mixing

CP violation if rate(B⁰ $\rightarrow \overline{B^0}$) \neq rate($\overline{B^0} \rightarrow B^0$).

- Are there 2 separate amplitudes? Yes.
 - Virtual intermediate states (M_{12}) Box diagram

- On-shell intermediate states (Γ_{12}) e.g. $\pi^+\pi^-$
- Are the necessary phase differences present? Yes.

The factor $-i = e^{-i\pi/2}$ plays the role of the strong phase: it does not change sign under CP.

• How big is it? Tiny!

$$\mathcal{A}_{\rm SL} \equiv \frac{\Gamma(\bar{B}^0_{\rm phys} \to \ell^+ X) - \Gamma(B^0_{\rm phys} \to \ell^- X)}{\Gamma(\bar{B}^0_{\rm phys} \to \ell^+ X) + \Gamma(B^0_{\rm phys} \to \ell^- X)} = (0.2 \pm 1.4) \times 10^{-2}$$

Virtual path (M₁₂) totally dominates. Neglect CPV in mixing.

Stephen Levy, UCSB

Vertex Detector

Drift Chamber

$$R_{in}$$
 = 23.6 cm, R_{out} = 80.9 cr

•
$$\frac{\mathbf{s}_{p_t}}{p_t} \approx 0.3\%$$
 in 1.5 field

Т

Detection of Internally Reflected Cherenkov Light (DIRC)

 Incident angle of Cherenkov photons maintained by internal reflection along quartz bars
 Measured in DIRC

$$\cos \boldsymbol{q}_c = (n \boldsymbol{b})^{-1}$$

$$p = mgbc$$

Measured in drift chamber

• Greater than $3\sigma K - \pi$ separation up to 3 GeV/c

Electro-Magnetic Calorimeter

- 6580 CsI (TI) crystals for good low energy resolutions (X₀ ~ 1.85 cm)
- Covers $-0.78 < \cos\theta_{lab} < 0.96$
- Typical electron id efficiency of 90% with less than 1% fake pion rate

Instrumented Flux Return

- Identify muons and neutral hadrons (K_L)
- Iron structure segmented and instrumented with Resistive Plate Counters (RPCs)
- Iron plate thickness varies from
 2 cm at innermost layers to 10

 π^0 Mass E_ \sim > 1000 MeV

- Extract sin2β by maximizing likelihood fit to time distribution
- Determine parameter A with true value fit with dataset {t_i} assuming normalized PDF f (A; t_i). Likelihood given by

$$L = \sum_{i}^{j} \ln f(A; t_i)$$

• As the number of data points increases

$$L \to N \int dt f(\hat{A}, t) \ln f(A, t)$$

• We find

$$\frac{\partial L}{\partial A} \rightarrow N \int dt f(\hat{A}, t) \frac{1}{f(A, t)} \frac{\partial f(A, t)}{\partial A}$$

evaluated at the true value of A vanishes

Asymptotically, the maximum likelihood occurs at true value of parameter DPF: April 05, 2003 Stephen Levy, UCSB