Results from BaBar on the $B \rightarrow K h^{+} h and B \rightarrow K^{*} h^{+}$ **Rare Exclusive Decays**

DPF-2002, College of William and Mary **University of California**, **Jeffrey Berryhill Santa Barbara** May 24, 2002

and Z diagrams.

2	
S	
ō	
G	
7	O
Ō	0
ב	2
	0
0	90
	7
	0
17 C	10
	U)
\Box	1
~	~
.=	
0	
č	
Ľ	
\mathbf{m}	

Authors	$B(B o Kl^+l^-)$	$B(B o K^* \mu^+ \mu^-)$	$B(B o K^* e^+ e^-)$
	$/10^{-6}$	$/10^{-6}$	$/10^{-6}$
Ali et al. 2000	$0.57_{-0.10}^{+0.17}$	$1.9^{\pm 0.5}_{-0.4}$	$2.3^{\pm 0.7}_{-0.5}$
Ali et al. 2001 (NNLO)	0.35 ± 0.12	1.19 ± 0.39	1.58 ± 0.49
Colangelo <i>et al</i> .	0.3	1.0	
Melikhov <i>et al.</i>	0.44	1.15	1.50
Aliev et al.	0.31 ± 0.09	1.4	
Geng and Kao	0.5	1.4	

- New Ali et al. predictions lower by 30-40% $(0.35\pm0.11({
 m form~fac.})\pm0.04(\mu_b)\pm0.02(m_{t,{
 m pole}})\pm0.0005(m_c/m_b)) imes10^{-6}$ [Ali, Lunghi, Greub, Hiller, hep-ph/0112300, 2001] $B(B \to K\ell^+\ell^-) =$
- long-distance contribution from $B(B o X_s \mu^+ \mu^-) = (4.15 \pm 0.70) imes 10^{-6}$ $B(B \to X_s e^+ e^-) = (6.89 \pm 1.01) \times 10^{-6}$ •

K(*)/I Results from BaBar, J. Berryhill, DPF-2002

 ψ resonances excluded

က

Recent Experimental Results

Belle: K// observed in 2001 (29.1 fb⁻¹, PRL 88, 021801 (2002))

 $B(B \rightarrow Kl^+l^-) = (0.75^{+0.25}_{-0.21} \pm 0.09) \times 10^{-6}$ $B(B \to K \mu^+ \mu^-) = (0.99^{+0.40+0.13}_{-0.32-0.14}) \times 10^{-6}$ $B(B \rightarrow K^* e^+ e^-) < 5.6 \times 10^{-6}$ $B(B \to K^* \mu^+ \mu^-) < 3.1 \times 10^{-6}$

- BaBar "Run 1" upper limit (20.7 fb⁻¹, accepted by PRL): $B(B \to Kl^+l^-) < 0.51 \times 10^{-6}$ 90% C.L. $B(B \to K^*l^+l^-) < 3.1 \times 10^{-6}$ 90% C.L.
- Belle K// central value = BaBar Run 1 96% C.L. upper limit
- This result:"Run 1+Run 2" update (56.4 fb⁻¹, preliminary).

K^(*)// Results from BaBar, J. Berryhill, DPF-2002

K(*)// Results from BaBar, J. Berryhill, DPF-2002

~

Analysis Strategy: Event Selection

- Reconstruct candidates for the different decay modes with appropriate particle ID requirements:
- $\mathbb{S}^{+} \to \mathsf{K}^{+}$ / ⁺ / ⁻, where / is either e or μ
- 𝔅 B⁰ → K⁰ *l* + *l* -, where K⁰ → K⁰_s→ $π^+π^-$
- $\mathbb{A} \mathbb{B}^+ \to \mathsf{K}^{*+}$ $l^+ l^-$, where $\mathsf{K}^{*+} \to \mathsf{K}^0_{s} \pi^+$ and $\mathsf{K}^0_{s} \to \pi^+ \pi^-$
- $\forall B^0 \rightarrow K^{*0} \ l^+ l^-, \text{ where } K^{*0} \rightarrow K^+ \pi^-$
- Backgrounds suppressed using more detailed aspects of the event
- Continuum events event shape
- ♦ BB events vertexing, E_{miss}
- 𝔅 B→J/ψ(→*l* ⁺*l* -)K(*) decays exclude regions in ΔE / m(*l* ⁺*l* -) plane
- Peaking backgrounds (small)
- Signal/background optimization with signal simulation and "large sideband" data. All candidates in the fit region "blinded" until selection criteria are finalized.

Analysis Strategy: Signal Fitting

- 2-D fit in the m_{ES} / ∆E plane estimates signal and background yield in the fit region.
- Background shape and yield float for each decay mode
- Image of the set o
- Small residual peaking background fixed from MC. Ŷ
- Signal branching fractions obtained from simulated signal efficiencies, total # of BB pairs produced.
- **Control samples in the data check signal efficiencies** and background characteristics :
- ↓ B to J/ψ K(*) candidates
- "Large sideband" region in m_{ES} / ∆E plane £
- $(k) = K^{(*)}e^{-\mu^+}$ combinations

B→J/√(→l+l)K(*) Background

These decays do not give us information about the short-distance physics and must be removed explicitly by a veto in the $\Delta {f E}$ vs. M(I+I-) plane.

B→J/\\(→/+/-)K(*) : Control Sample

- Kinematics very similar to the signal
- Verifies
 efficiencies of
 essentially all
 selection criteria
- Excellent agreement btwn.
 Data and MC for rates and distributions

Points: data Histo: MC

E.g. study tails in M(/⁺/-) distribution

Cevic 22

J/y and Large Sideband Control Sample Study: B Likelihood Variable

K^(*)// Results from BaBar, J. Berryhill, DPF-2002

2

(56.4 fb-1) K/+/- Fit Regions, 1+2 data **Unblinded Run**

E M

K^(*)// Results from BaBar, J. Berryhill, DPF-2002

MES

(56.4 fb⁻¹) K**I⁺I*⁻ Fit Regions, 1+2 data **Unblinded Run**

> Ш <

K^(*)// Results from BaBar, J. Berryhill, DPF-2002

MES

Run 1+2 Unblinded: *M*ES

2D fit projections after ∆*E* cut:

e: -110<ΔE<50 MeV μ: -70<ΔE<50 MeV

2D fit projections after *m_{ES}* cut

5.2724<m_{ES}<5.2856 GeV

V9M 001 \ stn9v9

V9M 002 \ 21n9v9

K^(*)// Results from BaBar, J. Berryhill, DPF-2002

			sesu	Its		reliminary
Unbinned m	ax. likeliho	ood fit in	n ∆E-m _i	_{Es} plane	for the 8	3 decay modes
Mode	Signal yield	Eff. bkgd	3 3	$(\Delta B/B)$ (%)	$\epsilon (\Delta B)_{\rm fit}$ (10 ⁻⁶)	B (10 ⁻⁶)
$B^+ o K^+ e^+ e^-$	$9.6^{+4.6}_{-3.3}$	1.9	17.1	± 6.8	+0.11 - 0.23	$0.91\substack{+0.42\\-0.32-0.24}$
$B^+ \to K^+ \mu^+ \mu^-$	$0.8^{+2.5}_{-1.3}$	1.2	6.6	土6.8	± 0.10	$0.13^{+0.37}_{-0.23}\pm 0.10$
$B^0 ightarrow K^0 e^+ e^-$	$1.8^{+2.8}_{-1.3}$	1.1	18.1	±8.0	± 0.35	$0.47^{+0.69}_{-0.39}\pm0.35$
$B^0 o K^0 \mu^+ \mu^-$	$2.9^{+2.7}_{-1.5}$	0.4	10.3	土7.8	±0.22	$1.34^{+1.16}_{-0.78}\pm0.25$
$B^0 o K^{*0} e^+ e^-$	$7.3^{+4.7}_{-3.5}$	3.4	10.2	土7.7	土0.48	$1.66^{+1.08}_{-0.83}\pm0.50$
$B^0 o K^{*0} \mu^+ \mu^-$	$4.6^{+4.2}_{-2.9}$	2.3	6.6	±9.3	± 0.39	$1.68^{+1.57}_{-1.09}\pm0.42$
$B^+ ightarrow K^{*+} e^+ e^-$	$1.5_{-2.0}^{+4.0}$	4.9	9.8	土9.7	+1.04 -1.06	$1.07\substack{+2.86+1.04\\-1.51-1.06}$
$B^+ \rightarrow K^{*+} \mu^+ \mu^-$	$2.8^{+3.5}_{-2.0}$	1.5	5.4	± 11.1	± 1.82	$3.68^{+4.39}_{-2.88} \pm 1.86$

K(*)// Results from BaBar, J. Berryhill, DPF-2002

0

Preliminary

 Combining channels: m_{ES} and ∆E projections for K/l and K*/l $B(B \rightarrow K^*ee)/B(B \rightarrow K^*\mu\mu)=1.21$ from Ali, *et al*, is used in combined K*// fit.

 $B(B \to K^* \ell^+ \ell^-) = (1.89^{+0.84}_{-0.72} \pm 0.31) \times 10^{-6}$ $B(B \to K\ell^+\ell^-) = (0.84^{+0.30+0.10}_{-0.24-0.18}) \times 10^{-6}$

19

K^(*)// Results from BaBar, J. Berryhill, DPF-2002

Systematic Uncertainties

Systematic errors on the efficiency

Largest sources ← **Trk eff.** ← **Model dependence** ~ 7 – 11 % total per mode

Systematic errors on the # of signal events in the fit

- Signal shape variation
- Background shape variation

o includes peaking background uncertainty

~ 0.5 - 2.0 events per mode

Signal Statistical Significance

- What is the probability that background alone would fluctuate to produce the observed signal?
- Consider change in In L when fixing the signal component to zero in fit.
- For $K/^+/_{-}$, equivalent to 5.0 σ fluctuation; if systematic uncertainties in signal yield included \Rightarrow still > 4 σ Ŷ
- \mathbb{A} For K**I*⁺*I*⁻, equivalent to 3.5 σ fluctuation
- The K/⁺/- signal yield constitutes a significant observation of this decay.
- The K**l*⁺*l*⁻ signal yield is not conclusively significant, and we place an upper limit for this channel:

 $B(B \to K^* \ell^+ \ell^-) < 3.5 \times 10^{-6} \quad 90\% \text{ C.L.}$

Preliminary

Comparison with Run 1 Result

- 90% C.L. 90% C.L. $B(B \to Kl^+l^-) < 0.51 \times 10^{-6}$ $B(B \to K^* l^+ l^-) < 3.1 \times 10^{-6}$ Run 1:
- Run 1+2:

$$B(B \to K\ell^+\ell^-) = (0.84^{+0.30+0.10}_{-0.24-0.18}) \times 10^{-6}$$

B(B \to K^*\ell^+\ell^-) < 3.5 \times 10^{-6} \quad 90\% \text{ C.L.}

Preliminary

- vertex detector alignment, etc. ⇒ resulted in migration of events in/out of All data fully reprocessed for Run 1+2 results: improvements in tracking, signal region. Sensitivity of this analysis is mostly unchanged by the reprocessing (some improvement in K_s modes).
- Migration of events into/out of signal region checked with control samples ⇒ results are compatible
- The probability for a *Kll* branching fraction at our new value to give our Run 1 result is at the 2-3% level.

K^(*)// Results from BaBar, J. Berryhill, DPF-2002

Conclusions

- We have studied the channels $B \rightarrow K/^{+}l$ and $B \rightarrow K^{*}l^{+}l$ using 56.4 fb⁻¹ of data at the BaBar experiment at PEP-II.
- We obtain the following results:

 $B(B \to K\ell^+\ell^-) = (0.84^{+0.30+0.10}_{-0.24-0.18}) \times 10^{-6}$ $B(B \rightarrow K^* \ell^+ \ell^-) < 3.5 \times 10^{-6}$ Preliminary

The statistical significance for $B \rightarrow K/^+/^-$ is computed to be > 4σ including systematic uncertainties.

Peaking Backgrounds	Usually due to particle mis-idenficiation, e.g.:	$B \rightarrow D\pi$ $\downarrow \qquad Mis-id'd as muons \Rightarrow$ $K\pi$ $K\mu\mu background$	Since mis-id probability is Mode Peaking background	higher for muons than for $B^{\pm} \rightarrow K^{\pm} e^{+} e^{-}$ $0.06^{+0.7}_{-0.06}$	electrons, explicit vetoes are $B^{\pm} \rightarrow K^{\pm} \mu^{+} \mu^{-}$ 0.5 ± 0.5	applied for the muon modes. $B^0 \rightarrow K_s^0 e^+ e^ 0.0^{+0.1}_{-0.0}$	• Summary of peaking $B^0 \rightarrow K_s^0 \mu^+ \mu^ 0.3 \pm 0.3$	backgrounds as obtained $B^0 o K^{*0} e^+ e^ 0.3 \pm 0.3$ from high statistics Monte	Carlo sample. $B^0 \rightarrow K^{*0} \mu^+ \mu^ 0.8 \pm 0.8$	These are included in fit to $B^{\pm} ightarrow K^{*\pm} e^+ e^ 0.05^{+0.3}_{-0.05}$	extract signal. $B^{\pm} \rightarrow K^{*\pm} \mu^{+} \mu^{-}$ 0.7 ± 0.7	
---------------------	--	--	---	---	--	--	---	---	---	---	--	--

K(*)// Results from BaBar, J. Berryhill, DPF-2002

24

BaBar Run 1 Analysis (20.7 fb⁻¹)

Projections of the 2D fit onto ${}^{1}_{e}$ m_{ES} after a ΔE cut.

Y

²o/VoM E\sointif

Continuum Background Suppression

- Continuum suppression: exploit fact that continuum events are more jet-like than BB events
- Cos θ_{thrust}: angle of candidate thrust axis
- $\clubsuit\$ Cos θ_B : angle of B in CM
- ✤ m_{KI}: KI invariant mass
- Combine optimally using Fisher discriminant
- Put plot here.

K(*)/I Results from BaBar, J. Berryhill, DPF-2002

29

Kaons with **DIRC**

 The DIRC is able to identify particles via a measurement of the cone angle of their emitted Cherenkov light in quartz

 $\cos\theta_c = \frac{1}{n\beta}$ $p = m |\beta\gamma|$ DIRC DCH

• Provides good π/K separation for

wide momentum range (up to ~4 GeV/c)

K(*)/I Results from BaBar, J. Berryhill, DPF-2002

<u>ы</u>

Particle Identification (DIRC) cont'

DIRC θ_c resolution and K- π separation measured in data \Rightarrow D^{*+} \rightarrow D⁰ π^+ \rightarrow (K⁻ π^+) π^+ decays

J/√ Control Samples: Lepton energy distributions

channels Electron

V9M 002 \ 2109v9

V9M 002 \ ztn9v9

3 3.5 4 4.5 5 lepton energy (GeV)

ო

2.5

2

1.5

BABAR preliminary

Points: data С Е Histo:

K^(*)// Results from BaBar, J. Berryhill, DPF-2002

33

J/⊎ Control Samples: Lepton energy distributions

BABAR preliminary

 $\mathsf{B}^0 o \mathsf{K}^{*0} \to \mathsf{K}^+\pi) \mathfrak{u}^+\mathfrak{u}$

2 8 50 4 ŝ 20 9

V9M 002 \ 2109v9

ო

2.5

2

1.5

0.5

-00-

Points: data С М **Histo:**

Data Sample

- e⁺ e⁻ → Y(4s) → BB data used for this talk
- Run 1: 20.6 fb⁻¹ (1999-2000) 23 million BB events
- Run 2: 55 fb⁻¹ (2001-2002) 60 million BB events (so far) • e⁺ e⁻ annihilation
 - 40 MeV below Y(4s) Run 1: 2.6 fb⁻¹ Run 2: 6.2 fb⁻¹
- This talk: 56.4 fb⁻¹ on peak

K^(*)// Results from BaBar, J. Berryhill, DPF-2002

Outline

- Introduction
- Analysis Overview
- Control Samples
- Results

Charmonium Control Samples: Yields in Data vs. Simulation

Mo	de	€ (%)	MC Yield	Data Yield	Data/MC (%)
$B^+ \to K^+ e^-$	+e-	18.0	669	660	98.6 ± 4.3
$B^+ o K^+ \mu$	$^{-}\pi^{+}$	15.9	553	502	90.8 ± 4.5
$B^0 o K^0 e^+$	с, I	18.4	191	190	99.4 ± 7.3
$B^0 o K^0 \mu^+$		16.0	157	161	102.6 ± 8.2
$B^0 o K^{*0}e^-$	+e-	12.3	375	367	97.9 ± 5.6
$B^0 \to K^{*0} \mu$	$^{-\mu^+}$	10.2	293	343	117.3 ± 7.1
$B^+ o K^{*+}\epsilon$	c+e-	9.5	114	102	89.6 ± 9.2
$B^+ \rightarrow K^{*+}_{l}$	$-\pi^+\mu^-$	7.8	88	89	101.7 ± 11.2
$B \to K^+ \ell^+ \ell$	$e^{2}(e+\mu)$		1222	1162	95.0 ± 3.1
$B \to K^0 \ell^+ \ell$	$^{-}(e+\mu)$		348	351	100.9 ± 5.4
$B \to K^{*0}\ell^+$	$\ell^- \; (e+\mu)$		667	710	106.4 ± 4.4
$B \to K^{*+}\ell^+$	$\ell^ (e + \mu)$		201	191	94.9 ± 7.1
All e^+e^- m	odes		1349	1319	97.8 ± 2.8
All $\mu^+\mu^-$ m	lodes		1090	1095	100.5 ± 3.2
All modes			2439	2414	99.0 ± 2.1

37